Point Cloud to Mesh using Poisson Surface Reconstruction

Ken Kobayashi
UC Berkeley
Berkeley, CA
takeshi_kobayashi@berkeley.edu

Zhaoyan Lin
UC Berkeley
Berkeley, CA
zhaoyan_lin@berkeley.edu

Yirong Zhen
UC Berkeley
Berkeley, CA
yirongzhen@berkeley.edu

Figure 1: Point cloud, normals and reconstructed surface.

ABSTRACT

A growing number of sensors, such as LIDAR and Microsoft Kinect,
become available today, with 3D point clouds being their raw output.
Surface reconstruction allows recovering more features about the
surface representation of objects by generating a mesh from a
point cloud. In this project, we implement the key algorithm of the
Poisson Surface Reconstruction method along with a pipeline of
generating a mesh from point cloud data in the PLY format.

KEYWORDS

Poisson equation, surface reconstruction, point cloud, mesh, com-
puter graphics

1 INTRODUCTION

3D scanners are now widely used to obtain virtual representations
of 3D shapes in many domains. Such scanning often gives only local
connectivity on the surface or a sample of vertices, like a point cloud.
However, we are more interested in a mesh representation so that
we can manipulate the geometry more easily. Meshes enable more
applications, including smoothing, resampling, texture mapping,
collision checking, and modeling in scenes.

Nonetheless, the reconstruction of surfaces from point clouds is
an ill-posed problem because an infinite number of surfaces can pass
through a given set of points. Moreover, the point sampling is often
nonuniform. The positions and normals can be noisy due to sam-
pling inaccuracy and scan mis-registration. Given these challenges,
various surface reconstruction methods are developed, attempting
to infer the topology of unknown surfaces, accurately fit the noisy
data, and fill holes reasonably.

In this project, we aim to learn about how to deal with this
challenging problem of reconstructing a mesh from a point cloud.
The goal of our project is to take as input a point cloud with vertex
positions but no normal vectors, estimate the normals, implement

the Poisson Surface Reconstruction algorithm [4] to approximate
an implicit surface equation and extract an isosurface to output as
a mesh.

2 RELATED WORK

Surface Reconstruction Surface reconstruction refers to the prob-
lem of generating a mesh from a set of surface samples (in this
project, point clouds). Surface reconstruction methods can be first
categorized by the surface representation into two approaches:
explicit and implicit.

As for explicit methods, the reconstructed surface interpolates
most of the input samples and requires post-processing to smooth
the surface and correct the topology. In our project, the poisson
surface reconstruction method falls in the implicit function category.
In an implicit approach, it defines a function with value less than
zero outside the model and greater than zero inside. The surface is
reconstructed by extracting the zero-level set.

The major difference between implicit and explicit methods
is that the implicit algorithms need to be preceded by an iso-
contouring technique because the outputs of these approaches
are manifold surfaces and usually defined by a complex function
[5]. That implicit surface needs to be triangulated by a follower
method. In our project, the used approach is the Marching Cube
algorithm.

Poisson Surface Reconstruction Poisson’s equation is a par-
tial differential equation with broad applications. Surface recon-
struction is an inverse problem. The goal is to reconstruct a smooth
surface based on a large number of points, a point cloud, where each
point contains information about their location and an estimate of
the local surface normal. Poisson’s equation can be utilized to solve
this problem with a technique called Poisson Surface Reconstruc-
tion first published in [4].

The goal of this technique is to reconstruct an implicit function f
whose value is zero at the points and whose gradient at the points
equals to the normal vectors. The set of points and the normal
vectors are thus modeled as a continuous vector field. The implicit
function f can found by integrating the vector field. Since not
every vector field is the gradient of a function, the problem may
or may not have a solution: the necessary and sufficient condition
for a smooth vector field V to be the gradient of a function f is
that the curl of V must be identically zero. In case this condition is
difficult to impose, it is still possible to perform a least-squares fit
to minimize the difference between V and the gradient of f.

In order to effectively apply Poisson’s equation to the problem of
surface reconstruction, it is necessary to find a good discretization
of the vector field V. The basic approach is to bound the data with
a finite difference grid. For a function valued at the nodes of such a
grid, its gradient can be represented as valued on staggered grids,
i.e. on grids whose nodes lie in between the nodes of the original
grid. It is convenient to define three staggered grids, each shifted
in one and only one direction corresponding to the components
of the normal data. On each staggered grid we perform [trilinear
interpolation] on the set of points. The interpolation weights are
then used to distribute the magnitude of the associated component
of ni onto the nodes of the particular staggered grid cell containing
pi. In [4], the authors give a more accurate method of discretization
using an adaptive finite difference grid, i.e. the cells of the grid are
smaller (the grid is more finely divided) where there are more data
points. They suggest implementing this technique with an adaptive
octree.

Marching Cubes Marching Cubes is a popular algorithm for
isosurface extraction originally proposed in [6] and further im-
proved in [3]. It is used for creating a polygonal mesh from a voxel
model. The basic idea is to first divide the volume into small cubes.
Knowing an implicit surface equation and a targeted isovalue, if
some voxels of a cube have values less than the targeted isovalue,
and some have values greater than that, then the voxel must con-
tribute some component of the isosurface. Triangular patches can
be created to divide the cube into regions inside or outside the iso-
surface by determining which edges of the cube are intersected by
the isosurface. The surface is extracted by connecting the patches
from all cubes on the isosurface boundary.

3 METHOD OVERVIEW

3.1 Input

The input point clouds we used are provided the Stanford 3D Scan-
ning Repository, like the Stanford Bunny. Besides, we manually
made up some simple point clouds, including a single cube con-
sisting of 8 vertices and some stacked cubes for experimenting our
implementation. All the files are in the PLY format.

3.2 Tools

PCL [7] The Point Cloud Library (PCL) is a standalone, large scale,
open project for 2D/3D image and point cloud processing. We used
it to manipulate the point clouds.

Eigen [2] Eigen is a header only library with very useful func-
tions for solving linear algebra problems. We used the Conjugate

Kobayashi, Lin and Zhen.

Gradient Solver to solve the least squares problem before extraction
of the iso-surface.

MeshLab [1] MeshLab is an open source system for processing
3D data. We use it as our main visualizer for PLY files.

3.3 Pipeline

Given a PLY file, we first parse it into a point cloud. We then esti-
mate its normals and concatenate into an oriented point set stored
in the Octree data structure using the PCL library. The Poisson
Surface Reconstruction method is implemented to solve for an ap-
proximate indicator function of the inferred shape, whose gradient
best matches the input normals. We use the Eigen library here to
solve the least squares problem. The output is then iso-contoured
using the marching cubes method, and the output of marching
cubes is then stored into a PLY output file.

4 TECHNICAL APPROACH

4.1 PLY Parsing and Normal Estimations

Here we simply use the PCL library to read in the PLY file. The
Stanford 3D model library contains point cloud files of different
models, but we chose to use the bunny file which was one of the
more simple models. After the PLY file is parsed, we need the normal
vector at each point p for the Poisson reconstruction algorithm.
In this step, we turn to the PCL library for such a functionality
to save time. The PCL library provides the method for normal
estimation. Firstly, we split the input points into smaller chunks
using the spatial decomposition technique, a KD-tree. We then call
the library function to perform the closest point search in that
space. In PCL, we can opt for either determining a fixed number
of k points in the neighborhood of point p, or all points which
are found inside of a sphere of radius r centered at p. Since the
scale of our point cloud can vary, we choose the first method. The
normals are then calculated through eigendecomposition of the
k-neighborhood point surface patch.

Next, we concatenate the normal vectors to the original point
cloud. It gives us an oriented point cloud that is required by the
Poisson reconstruction algorithm.

4.2 Octree

After realizing the lack of time, we decided to also leave the octree
implementation to the PCL library. An octree or some sort of 3D
space partitioning structure is needed for PSR because the algo-
rithm takes advantage of global relationships. If the same thing was
implemented without an octree, the algorithm would take forever
to finish. The PSR algorithm also looks at each of the lowest level
nodes in the tree to calculate the per node functions necessary to
solve for the indicator functions.

4.3 Poisson Surface Reconstruction
Implementation

Here, we followed the authors report very closely [4]. First, now
that the vertices are partitioned into the octree nodes, for every
node o € O, we define F, to be a unit-integral, "node function"

Point Cloud to Mesh using Poisson Surface Reconstruction

centered about o and scaled to the size of o

Rolg) = F (20) — <1>

Here, q is a vertex position, o.c is the center of the octree node, and
0.w is the width of 0. We now have to define the base function F,
but we chose to use the function described by the authors which is:

1 |t| <05
0 otherwise
@
This is simply the nt" convolution of a box filter with itself. This
is essentially a smoothing filter we apply to every node. We also
decided to use a value of n = 3 to follow the author’s steps and
try to reduce complications. The paper then tells us to define the
vector field (at sub node precision) by using trilinear interpolation
between the 8 nearest octree nodes on each sample position. The
function is thus:

Vi@=) D, aosFolgsN (3)

SES 0eNgbrp(s)

F(x,y,2z) = (B(x)B(y)B(z))'* with B(t) = {

Where s is the sample vertex, s.N is the normal of the sample, a
is the trilinear interpolation weights, and Ngbrp is the 8 nearest
nodes at tree depth D. Now that we have defined the vector field
relative to the octree nodes, we move on to the least squares min-
imization problem. The report goes extensively on how the final
form is reached, but for our purposes, these were the important
components:

2 2 2
Loo = <a Fo F0'> + <6 Fo F0r> + <6 Fo F0/> 4

ox?’ ay?’ 022’
U = <V - 17,F0>)
min ||Lx — o||? (6)
x€RI|

We first had to compute the matrix L and vector v for the final
solution. Once these components were constructed, we could use
the Eigen Conjugate Gradient Solver to solve for x. We can then
move onto calculating isovalues which closely approximate the
position of the sample inputs. This is done by evaluating y at the
sample positions and using the average of the values for isosurface
extraction.

X =ZoxoFo 7)

- 3) 1 5
oM={qeRli@=y} with y=rg Disp) ®
s€S
Once we have the isovalues, we can move on to using Marching
Cubes to extract the isosurface.

4.4 Marching Cubes

Here we use prewritten code from the authors of PSR [4]. Their
marching cubes code takes in isovalues to determine whether a
point is inside the object or outside. Other than this, the code is the
standard marching cubes algorithm, where it slides a cube over a
3D space and uses preset configurations, based on the points of the
cube that are inside or outside the object, to construct triangles. We
then take the output triangles and store them inside another PLY
file using the PCL PLY writer.

5 RESULTS

In this section, we present the reconstruction results using the
algorithm we implemented and analyze the results for a better
understanding of the algorithm.

Our first set of experiments are done on the point cloud of a
single cube. The input file is only consist of eight vertices. We
intend to debug our implementation with the shape as simple as
possible. In the example, we set the depth to be 3. However, the
result as shown in Figure 2, it’s far from good. Several faces of the
cube are missing, while there are also curved surfaces along the
edges. We suggest that it is the result of not enough samples and the
property that faces around each vertex of the cube are orthogonal
to each other. The input is too sparse for the surface features to be
extracted.

Figure 2: Reconstruction result of a cube.

Figure 3: The stack of cubes.

We decide to move to a more complicated example of five stacked
cubes in Figure 3. This point cloud is consists of 22 points. The depth
used is still 3 given the simplicity. Similarly, the results are showing

missing faces. The reconstructed surface does not properly wrap the
shape. The following two Figures 4, 5 show two angles of view of
the stacked cubes. The point cloud is still too sparse to reconstruct
the surface well.

Figure 4: Reconstruction result of cubes.

Figure 5: Reconstruction result of a cubes.

After that, we decide to test on the Stanford bunny, which has
more than 30k points, using a tree depth of 10. This time, a closed
surface is successfully constructed despite some defects in Figure
7. We compare it carefully with the ground truth in Figure 6. On
the face of the bunny, the eyes have extra volumes connected to
the ear part, looking like a cancer. Similar effects are seen on the
check, the lower jaw, and the chest. Also, a platform appears under
the bunny’s feet, where there is supposed to be nothing. Aside the
above mentioned parts, we observe that the details of the body are
well reconstructed. We believe that there is an issue with our code
pipeline that could be causing these issues. If we had more time,
this would have been the next issue to investigate.

We also tested the bunny with different tree depths. We decrease
it to be 6 in Figures 8. With a lower depth number, it is clear the
details on the surface become rough. We can also see clear polygons

Kobayashi, Lin and Zhen.

Figure 6: Ground truth.

Figure 7: Reconstruction result of the bunny. Depth = 10

Figure 8: Reconstruction result of the bunny. Depth = 6.

in these results. This is a good sign that the algorithm implementa-
tion is somewhat working. As the tree depth decreases, then end
tree nodes should be smoothing over more sample points per node,

Point Cloud to Mesh using Poisson Surface Reconstruction

so we essentially see a reduction in resolution. Therefore, a larger
depth number is necessary when having dense point clouds, if we
want more resolution in the features.

Here we also present a set of example reconstructing the surface
of a sphere. It is worth mentioning that the scale of the sphere
is significantly larger than the bunny. The original point cloud is
in Figure 9 and the result of our implementation is in Figure 10.
Poisson reconstruction is able to deal with it quite effectively. We
also quickly implement the greedy projection triangulation method
using the PCL library as shown in Figure 11. There are obvious
holes in the reconstructed mesh. A better mesh required further
processing. Hence, we show that the Poisson Surface Reconstruc-
tion method is a powerful reconstruction algorithm that generates
sealed meshes in this case.

Figure 9: Point cloud of the sphere

Figure 10: Reconstruction result of the sphere using Poisson

Figure 11: Reconstruction result of the sphere using greedy
projection triangulation

6 CONCLUSION

In this project, we implement the Poisson Surface Reconstruction
algorithm and propose the pipeline of solving the surface recon-
struction problem. We take advantage of existing libraries and com-
bine different techniques for different steps in our project. We took
the time to understand the math behind the algorithm and tackle it
by simplifying it into smaller stages. Our results have defects but
are satisfactory results for us.

During the project, we have also learned how to research a prob-
lem, plan for a project and execute the project while changing the
plan all the time. If we could have planned again, we would start
understanding PSR earlier and have more time testing and improv-
ing our implementation. We have found that existing libraries were
very helpful. Originally, we planned to implement parsing and visu-
alizing the point cloud from scratch but turned to PCL to save time.
Overall, we have learned lessons both in technical understanding
and project management.

REFERENCES

[1] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio
Ganovelli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing
Tool. In Eurographics Italian Chapter Conference, Vittorio Scarano, Rosario De
Chiara, and Ugo Erra (Eds.). The Eurographics Association. https://doi.org/10.
2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

[2] Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

[3] Wolfgang Heiden, T Goetze, and Jirgen Brickmann. 1993. Fast generation of
molecular surfaces from 3D data fields with an enhanced 4AIJmarching cubeaAl
algorithm. Journal of Computational Chemistry 14, 2 (1993), 246-250.

[4] Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruc-
tion. ACM Transactions on Graphics (ToG) 32, 3 (2013), 29.

[5] A Khatamian and Hamid Arabnia. 2016. Survey on 3D Surface Reconstruction.
Journal of Information Processing Systems 12 (01 2016), 338-357. https://doi.org/
10.3745/J1PS.01.0010

[6] William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. In ACM siggraph computer graphics, Vol. 21.
ACM, 163-169.

[7] Radu Bogdan Rusu and Steve Cousins. 2011. 3D is here: Point Cloud Library (PCL).
In IEEE International Conference on Robotics and Automation (ICRA). Shanghai,
China.

https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.3745/JIPS.01.0010
https://doi.org/10.3745/JIPS.01.0010

	Abstract
	1 Introduction
	2 Related Work
	3 Method Overview
	3.1 Input
	3.2 Tools
	3.3 Pipeline

	4 Technical Approach
	4.1 PLY Parsing and Normal Estimations
	4.2 Octree
	4.3 Poisson Surface Reconstruction Implementation
	4.4 Marching Cubes

	5 Results
	6 Conclusion
	References

